Q.P. Code: 16HS612 Reg. No: SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Time: 3 hours UNIT-I 1 corresponding analytic function. OR 2 with vertices at $1 \pm i$ and $-1 \pm i$.

a poles. 6M

^b Find residue of
$$\frac{z^2 - 2z}{(z^2 + 4)(z + 1)^2}$$
. 6M

⁴ a Find the bilinear transformation which maps the points
$$(\infty, i, 0)$$
 in the z-plane
into $(-1, -i, 1)$ in the w-plane. 6M

^b Find the image of the infinite strip
$$0 < y < \frac{1}{2}$$
 under the transformation $w = \frac{1}{z}$. 6M

for the following functions
$$(i) \cdot f(z) = \frac{1}{3z^2 + 1}$$
 and $(ii) f(z) = \frac{z}{1 - e^z}$. 6M

B.Tech II Year I Semester (R16) Regular Examinations Nov 2017 **ENGINEERING MATHEMATICS-III** Max. Marks: 60 (Answer all Five Units 5 x 12 = 60 Marks) ^a Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |\text{Re al } f(z)|^2 = 2 |f'(z)|^2$ where w = f(z) is analytic. 6M ^b If $u(x, y) = x^3 - 3xy^2$, then find its harmonic conjugate and also the ^a Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$, if C is the square 6M b B is the positively oriented boundary of the region between the circle |z| = 4 and the square with sides along the lines $x = \pm 1$ and $y = \pm 1$. Evaluate $\int f(z) dz$ UNIT-II Find the poles of the function $f(z) = \frac{1}{(z-1)(z+1)}$ and the residues at these 3 UN 4 Page 1 of 2

6M

5	a	Find the root of the equation $x \log_{10}^{x} = 1.2$ using false position method.	6M
	b	Find the root of equation $e^x \sin x = 1$ using Newton's Raphson Method.	6M
		OR	
6	a	Given $\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.7660$, $\sin 55^\circ = 0.8192$, $\sin 60^\circ = 0.8660$ then	
		find sin 52° using Newton's forward interpolation formula.	6M
	b	A curve passes through the points $(0,1,8), (1,1,0), (3,-1,8)$ and $(6,9,0)$. Find the	
		slope of the curve at $x=2$.	6M
		UNIT-IV	

Fit a parabola of the form $y = a + bx + cx^2$ to the following data

7

X	1	2	3	4	5	6	7
у	2.3	5.2	9.7	16.5	29.4	35.5	54.4

6M

6M

6M

Determine the constants a and b by the method of least square such that $y = ae^{bx}$

X	2	4	6	8	10	
У	4.077	11.084	30.128	81.897	222.62	6M

OR

a Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ using Simpson's $\left(\frac{3}{8}\right)^{\text{th}}$ rule taking h= $\frac{1}{6}$. Hence obtain an 8 approximation value of π .

b Evaluate $\int_{0}^{6} \frac{dx}{1+r^{2}}$ by using Trapezoidal rule and compare the result with its actual value. 6M

UNIT-V

9 a Evaluate y(0.2) and y(0.4) correct to four decimal places by Taylor's series method if y(x) satisfies y'(x) = 1 - 2xy and y(0) = 0. 6M

Using Picard's method obtain the solution of $\frac{dy}{dx} = x - y^2$, y(0) = 1 and compute b y(0.1) = 1 Correct to four decimal places.

OR

- Using Euler's method solve for y at x = 2 from $\frac{dy}{dx} = 3x^2 + 1$, y(1) = 2 taking а 10 step size (i) h=0.5 and (ii) h=0.25. 6M
 - b Obtain the values of y at x = 0.1, 0.2 using Runge-Kutta method of fourth order for the differential equation y' + y = 0, y(0) = 1. 6M

*** END ***